THE PHILICITY OF PHENOXYCHLOROCARBENE TOWARD STYRENES

Robert A. Moss* and Leon A. Perez

Wright and Rieman Laboratories, Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903

Summary. When generated by the thermolysis of 3-phenoxy-3-chlorodiazirine, phenoxychlorocarbene is an ambiphile in addition reactions with styrene derivatives.

Methoxychlorocarbene behaved as an ambiphile in addition to alkenes; <u>i.e.</u>, as an electrophile toward electron-rich olefins and as a nucleophile toward electron-poor olefins.¹ Ambiphilicity persisted whether the substrates were ethene derivatives¹ or styrene derivatives,² and we found that the ambiphilicity of CH₃OCCl could be rationalized by inspection of the carbene/alkene frontier molecular orbital (FMO) interactions.¹⁻³ These studies were extended to phenoxychlorocarbene, <u>1</u>, which was thermally generated from 3-phenoxy-3-chlorodiazirine, <u>2</u>, and also found to be ambiphilic in additions to ethene derivatives.⁴

Very recently, it was reported that PhOCCl generated by phase transfer catalytic (aq. NaOH, PhCH₂NEt₃, Cl⁻) α -elimination from α, α -dichloroanisole, <u>3</u>, added in poor yields (<u><</u>ll*) to styrenes as a <u>nucleophile</u>, with ρ (vs. σ) = 0.40 at 27°C.⁵ <u>A priori</u>, it is not impossible that PhOCCl could be an ambiphile toward ethene substrates but a nucleophile toward styrenes; after all, the FMO energies of the substrates are different. However, combining <u>ab initio</u> HOMO and LUMO energies of PhOCCl⁴ with semi-empirical HOMO and LUMO energies of X-C₆H₄CH=CH₂,² we find that PhOCCl is "predicted" to be an <u>ambiphile</u> toward representative styrenes.⁶ Because of the disparity between our (admittedly crude) FMO prediction⁶ and the reported⁵ nucleophilicity of PhOCCl toward styrenes, we determined the styrene philicity of PhOCCl (thermally generated from <u>2</u>). We now report that the observed <u>ambiphilicity</u> is in accord with FMO predictions⁶ and consistent with the behavior of PhOCCl toward ethenes.⁴

Phenoxychlorodiazirine $(\underline{2})^4$ was thermally decomposed $(25^\circ\text{C}, 72\text{h})^7$ in each of six substituted styrenes (<u>cf</u>., Table I), affording <u>syn/anti</u> mixtures of 1-chloro-1-phenoxy-2-arylcyclopropanes, <u>4</u>. Products were isolated in 34-75% yields (based on <u>2</u>), and purified either by chromatography on silica gel or kugelrohr distillation (~85°C/0.02 mm-Hg). Product identities followed from structurally-consonant nmr spectra and acceptable elemental analyses. 2720

The relative reactivities of PhOCCl toward the styrenes were determined in the normal manner. Diazirine 2 (1-3 mmol) was decomposed (25°C, dark, 72 h)⁷ in carefully weighed binary mixtures of the styrenes (each present in \geq 10-fold excess). After reaction, styrenes were removed under vacuum (T \leq 40°C) and the cyclopropane product ratios were determined by hplc (Waters Associates instrument, C-18 reverse phase RCM column, eluents CH₃OH/H₂O or CH₃CN/H₂O), using a calibrated uv detector and electronic integration. Relative reactivities were calculated from $\frac{k_A}{k_B} = (\underline{O}_B/\underline{O}_A) \times (\underline{P}_A/\underline{P}_B)$, where $\underline{O}_B/\underline{O}_A$ represents the initial styrene mole ratio, and $\underline{P}_A/\underline{P}_B$ is the measured product ratio. Results appear in Table I. Normalizing the experimental reactivities to styrene ($\underline{k}_{rel} = 1.00$), we obtain the relative reactivities shown in Table II, where we include, for comparison, related data for MeOCCl² and for "PhOCCl" generated from 3.⁵

The results in Table II clearly establish diazirine-generated PhOCCl as an ambiphile, electrophilic toward the electron-rich styrenes and nucleophilic toward the electron-poor styrenes. These trends are particularly clear in Figure 1, where log (\underline{k}_{rel}) is plotted against σ^+ (for donor substituents) or σ (for withdrawing substituents).⁸ Toward the <u>p</u>-CH₃O, <u>p</u>-CH₃, H subset, PhOCCl shows $\rho^+ = -0.37$ (<u>r</u> = 0.9997); toward the <u>p</u>-CF₃, <u>p</u>-Cl, H subset, $\rho = +0.28$ (<u>r</u> = 0.9997). We do not understand why <u>m</u>-nitrostyrene appears to be less reactive than expected from the latter correlation, but we note that this olefin is the only <u>meta</u>-substituted substrate in the set.

The ambiphilicity of PhOCC1 resembles that of $MeOCC1^2$ (Table II), as anticipated from FMO considerations.⁶ It remains to explain the differing philicities of the PhOCC1 species generated from <u>2</u> or <u>3</u>. We believe that the species thermally generated from <u>2</u> is free PhOCC1. As in the case of methoxychlorodiazirine,^{1a} absolute rate constants for thermolysis of <u>2</u> at 25°C displayed little solvent dependence. In particular, the rate constants were very similar in an electron-rich or an electron-poor alkene, consistent with cyclopropanation by olefinic capture of PhOCC1 rather than by (e.g.) the decomposition of an initially-formed pyrazoline (with electron-poor alkenes).⁹

Perhaps the species initially generated by the basic decomposition of $\underline{3}^5$ is carbanion $\underline{5}$. Rate determining addition of $\underline{5}$ to styrenes, followed by rapid cyclization to $\underline{4}$ with loss of chloride ion, would be expected to show $\rho > 0$ (nucleophilic behavior) in a Hammett correlation.

In conclusion, when generated by the thermolysis of diazirine 2, a method expected¹⁰ to generate the free carbene, PhOCC1 behaves as an ambiphile in additions to ArCH=CH₂. These results are in accord with FMO predictions.^{6,11}

<u>Acknowledgments</u>. We are grateful to the National Science Foundation for financial support and to Professor H. Dürr for helpful correspondence. L.A.P. thanks the Graduate School of Rutgers University for a Louis Bevier Fellowship.

References and Notes

- (1) (a) R.A. Moss, M. Fedorynski, and W-C. Shieh, J. Am. Chem. Soc., <u>101</u>, 4736 (1979); R.A. Moss and R.C. Munjal, <u>Tetrahedron Lett</u>., 4721 (1979). (b) Review: R.A. Moss, <u>Acc. Chem. Res.</u>, 13, 58 (1980).
- (2) R.A. Moss, W. Guo, and K. Krogh-Jespersen, Tetrahedron Lett., 23, 15 (1982).
- (3) R.A. Moss, C.M. Young, L.A. Perez, and K. Krogh-Jespersen, J. Am. Chem. Soc., 103, 2413 (1981).
- (4) R.A. Moss, L.A. Perez, J. Włostowska, W. Guo, and K. Krogh-Jespersen, <u>J. Org. Chem.</u>, <u>47</u>, 4177 (1982).
- (5) W. Brück and H. Dürr, Angew. Chem. Int. Ed. (Engl.), 21, 916 (1982).

	Competir	ng alkenes	
Entry	Aa	B ^a	$\frac{k_A}{M_B}$
1	m-NO ₂	Н	1.33 ± 0.05
2	<u>p</u> -C1	Н	1.17 ± 0.02
3	<u>р</u> -СН ₃	н	1.32 ± 0.06
4	p-CF ₃	н	1.42 ^C
5	<u>р</u> -ОСН ₃	<u>p</u> -CF ₃	1.37 ^C
6	<u>р</u> -ОСН ₃	<u>p</u> -Cl	1.69 ^C
7	p-OCH ₃	p−CH ₃	1.45 ^C

Table I. Experimental Relative Reactivities for CH₃OCCl + X-C₆H₄CH=CH₂, 25°C.

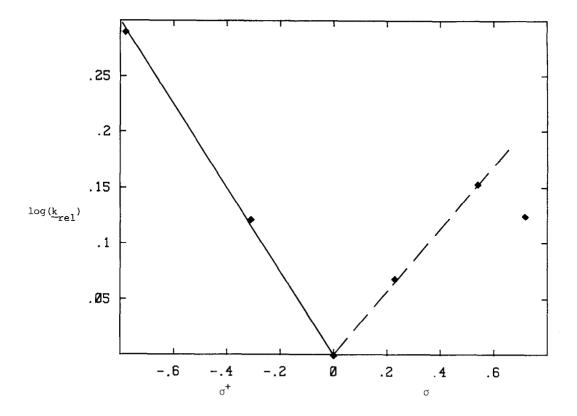
^aX in X-C₆H₄CH=CH₂. ^bErrors are average deviations of 2 independent competitions. ^CSingle competition.

		<u>k_x/k_H</u>	
X in X-C ₆ H ₄ CH=CH ₂	PhOCCl ^a	PhOCC1 ^b	MeOCC1 ^C
p-CH ₃ O	1.95 ^d	0.74	1.50
<u>p</u> -CH₃	1.32	0.88	1.07
Н	1.00	1.00	1.00
<u>p</u> -Cl	1.17	1.12	1.04
p-CF ₃	1.42		
<u>m</u> -NO ₂	1.33		1.27

Table II. Relative Reactivities for Additions of CZY to X-C₆H₄CH=CH₂.

^aThis work; thermal decomposition of 2, 25°C. ^bReference 5; NaOH-phase transfer catalyzed decomposition of 3, 27°C. ^CReference 2; thermal decomposition of methoxychlorodiazirine, 25°C. ^dCalculated from Table I as the average of the products of entries 4x5 (1.95), 6x2 (1.98), and 7x3 (1.91).

References and Notes (continued)


(6) Taking $\varepsilon_1^{\text{HO}} = -10.78$ (eV), $\varepsilon_1^{\text{LU}} = 2.02$, and $\varepsilon_{\text{X-C}_6\text{H}_4\text{CH}=\text{CH}_2}^{\text{HO}} = -7.74$ (p-CH₃O), -8.20 (p-CH₃), -8.43 (H), -8.90 (<u>m</u>-Cl), -9.11 (<u>m</u>-NO₂),² and $\varepsilon_{X-C_6H_4CH=CH_2}^{LU} = 0.48$ (<u>p</u>-CH₃O), 0.34 (<u>p</u>-CH₃), 0.25 (H), -0.27 (m-Cl), -0.34 (m-NO₂),² we obtain^{1,2} the differential orbital energies E = $(\varepsilon_{PhOCC1}^{LU} - \varepsilon_{X-C_6H_4CH=CH_2}^{HO})$ and $\underline{N} = (\varepsilon_{X-C_6H_4CH=CH_2}^{LU} - \varepsilon_{PhOCC1}^{HO})$ (in eV) for the reaction of PhOCC1 with each styrene: -X in X-C₆H₄CH=CH₂----
 Differential Energy
 p-CH₃O
 p-CH₃
 H
 m-Cl

 E
 9.76
 10.22
 10.45
 10.92

 N
 11.26
 11.12
 11.03
 10.51
m-NO₂ 11.13

E is the energetically dominant FMO interaction with <u>p</u>-CH₃O and <u>p</u>-CH₃ styrenes, whereas <u>N</u>

10.44

<u>Figure 1</u>. $\log(\underline{k_{rel}})$ vs. σ^+ or σ for additions of PhOCCl to X-C₆H₄CH=CH₂; <u>cf.</u>, Table II. The solid line correlates data for X=p-CH₃0, p-CH₃, and H; the broken line correlates data for H, p-Cl, and p-CF₃. The point for X=m-NO₂ has been arbitrarily excluded.

References and Notes (continued)

- (6) (continued) dominates with the m-Cl and m-NO₂ derivatives. The inversion, centered at styrene itself, "predicts" that PhOCCl should be ambiphilic toward this substrate set. In particular, PhOCCl should be <u>electrophilic</u> toward the p-CH₃O, p-CH₃, H subset.
- (7) The half-life of 2 is ~19 h under these conditions; see below.
- (8) Sigma values are taken from C.D. Ritchie and W.F. Sager, Prog. Phys. Org. Chem., 2, 323 (1964)
- (9) Intermittently monitoring the decay of 2 at 340 nm, we found good first order kinetics with 10^{6} k (sec⁻¹) = 9.47 (in Me₂C=CMe₂), 11.1 (in CH₂=CHCOOMe), and 9.83 (in isooctane). Interference by styrene absorbances prevented us from carrying out these experiments with the actual substrates of Table I.
- (10) N.P. Smith and I.D.R. Stevens, J. Chem. Soc., Perkin Trans., <u>2</u>, 213 (1979); <u>Tetrahedron Lett.</u>, 1931 (1978); R.A. Moss and W.-C. Shieh, <u>ibid.</u>, 1935 (1978).
- (11) A referee has asked whether the possible intervention of kinetically significant carbene/alkencomplexes during addition reactions could complicate interpretation of carbenic philicity. The general occurrence of such complexes [cf., Tetrahedron Lett., 24, 685 (1983) for leading references] is by no means clear; their importance could be restricted to highly reactive carbene and alkenes (neither PhOCC1 nor styrenes fit this description). Moreover, the electrophilicity of CCl₂, CF₂, and PhCC1, the nucleophilicity of (CH₃O)₂C, and the ambiphilicity of PhOCC1, are all as predicted by theoretical considerations (see above).^{1b,4} If carbene/alkene complexes intervene in these reactions, they do not appear to create anomalies in linear free energy analyses.

(Received in USA 24 March 1983)